Abstract

Recently, (bi)sulfite as the precursor of SOx− generation has drawn significant attention in advance oxidation process based on SO4− (SR-AOP) due to its low cost and conforming to waste utilization. The current activation on (bi)sulfite mainly employs the transition metals and their composite materials, which limited its application. In this study, chlorine dioxide (ClO2) was employed to activate bisulfite (BS). It was found that the dominant radicals in BS/ClO2 process were ClO and SO4− according to scavenger experiments and ESR detection. To investigate the performance of the established BS/ClO2 system, atrazine (ATZ) was used as target pollutant. The degradation efficiency of ATZ reached 86.8% within 3 min and nearly half of the degradation occurred at the first 10 s. The optimum ClO2 dosage for the ATZ degradation was 100 μM when the BS dosage was 200 μM. The effects of pH, temperature and coexisting substances including halide ions, bicarbonate ion and humic acid on ATZ degradation by BS/ClO2 were investigated. It is predicted that the degradation pathway of ATZ in this study involved olefination, dealkylation and the combination of dichlorination with hydroxylation according to the final products identified after degradation. The system has also shown the ability on degradation of four pharmaceuticals and personal care products (PPCPs) including ibuprofen, bisphenol A, sulfamethoxazole and carbamazepine. This study reveals that ClO2 is capable of activating BS and provides a method for effectively degrading refractory organic contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.