Abstract

Nanoscale copper-nickel binary oxysulfide (CuNiOS) was for the first time synthesized by a co-precipitation method and characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Brunauer-Emmett-Teller (BET). CuNiOS was used as a catalyst for the degradation of aniline by peroxydisulfate (PDS) and its catalytic performance was investigated via various impact factors including catalyst loading, PDS and aniline concentrations as well as solution initial pH. The results demonstrate that CuNiOS had highly catalytic activity and approximately 80% of total organic carbon of aniline solution (0.1 mM) was removed within 20 min. Copper and nickel ions on the surface of catalyst are the critical catalytic centers to activate PDS. The components of copper and nickel in the catalyst exhibited an excellent synergistic role in the degradation of aniline. The analyses of electron paramagnetic resonance (EPR) and the experiments of radical quenching confirmed the generation of SO4− and OH in the reaction system, both of which were responsible for the degradation of aniline. The intermediates of aniline degradation were identified by UPLC-MS and the possible pathways of aniline degradation are further proposed. Based on the results obtained in this study, it is educed that CuNiOS-catalyzed PDS is a promising approach to the treatment of the wastewater containing aniline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.