Abstract

Durability is one of the obstacles to the large-scale commercialization of proton exchange membrane fuel cell (PEMFC) stacks. Understanding its decay behavior is a prerequisite for improving durability. In this study, rapid degradation characteristics of an air-cooled PEMFC stack are investigated. Due to the simultaneous presence of various degradation sources, the maximum power of the PEMFC stack has been reduced by 39.6% after just 74.6 h of operations. Performance degradation characteristics are sought by analyzing the cell voltage, temperature distribution, ion chromatography, and surface morphology of the gas diffusion layer. The result shows that abnormal cell voltage and temperature distribution can reflect the problematic location. The fluoride ion emission rate is 0.111 mg/day, which proves that the membrane has been seriously degraded. Contact angle reduction and impurities attached to the surface of the gas diffusion layer lead to the water management failure. It is also found that the main factor for performance degradation could be different under different current conditions. And more information can be found under higher current conditions during monitoring the decay of PEMFCs. This study helps to deepen the understanding of performance degradation characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.