Abstract

Highly porous poly(dicyclopentadiene) (pDCPD) foam was synthesized via ring opening metathesis polymerization and high internal phase emulsion (HIPE) templating. Alkane and alkene moieties within the pDCPD foam oxidized slowly in air to form carbonyl, peroxy, and hydroxyl groups. Heating pDCPD to 85 °C in air accelerated the oxidation of pDCPD, producing reactive peroxy species at reduced time scales, compared to oxidation at room temperature. The oxidized pDCPD foams rapidly sequestered and decontaminated the toxic chemical warfare agent simulant, demeton-S via oxidation to vinyl, sulfoxide, and sulfone oxidation products. In addition, the porosity and high surface area of the pDCPD HIPE foams likely assists in the sequestration of demeton-S via capillary interaction. Collectively, these data demonstrate a new and highly tunable class of polymer materials capable of simultaneous sequestration and decontamination of toxic chemicals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.