Abstract

We show that superpolynomial decay of correlations (rapid mixing) is prevalent for a class of nonuniformly hyperbolic flows. These flows are the continuous time analogue of the class of nonuniformly hyperbolic maps for which Young proved exponential decay of correlations. The proof combines techniques of Dolgopyat and operator renewal theory. It follows from our results that planar periodic Lorentz flows with finite horizons and flows near homoclinic tangencies are typically rapid mixing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.