Abstract

Luminescent nanocrystals hold great potential for bioimaging because of their exceptional optical properties, but their use in live cells has been limited. When nanocrystals enter live cells, they are taken up in vesicles. This vesicular sequestration is persistent and precludes nanocrystals from reaching intracellular targets. Here, we describe a unique, cationic core-shell polymer colloid that translocates nanocrystals to the cytosol by disrupting endosomal membranes via a low-pH triggered mechanism. Confocal fluorescence microscopy and flow cytometry indicate that picomolar concentrations of quantum dots are sufficient for cytosolic labeling, with the process occurring within a few hours of incubation. We anticipate a host of advanced applications arising from efficient cytosolic delivery of nanocrystal imaging probes: from single particle tracking experiments to monitoring protein-protein interactions in live cells for extended periods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call