Abstract

The rapid and efficient creation of virtual environments has become a crucial part of virtual reality applications. In particular, civil and defense applications often require and employ detailed models of operations areas for training, simulations of different scenarios, planning for natural or man-made events, monitoring, surveillance, games and films. A realistic representation of the large-scale environments is therefore imperative for the success of such applications since it increases the immersive experience of its users and helps reduce the difference between physical and virtual reality. However, the task of creating such large-scale virtual environments still remains a time-consuming and manual work. In this work we propose a novel method for the rapid reconstruction of photorealistic large-scale virtual environments. First, a novel parameterized geometric primitive is presented for the automatic building detection, identification and reconstruction of building structures. In addition, buildings with complex roofs containing non-linear surfaces are reconstructed interactively using a nonlinear primitive. Secondly, we present a rendering pipeline for the composition of photorealistic textures which unlike existing techniques it can recover missing or occluded texture information by integrating multiple information captured from different optical sensors (ground, aerial and satellite).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call