Abstract

Rapid cooling contractures (RCCs) were used to assess changes in sarcoplasmic reticulum (SR) Ca content in both isolated rabbit ventricular myocytes and multicellular preparations. The main difference observed between these preparations was the magnitude of RCCs relative to twitches, apparently due to differences in measured parameters, i.e., unloaded shortening vs. isometric tension. When multicellular preparations were unloaded, RCC shortening was similar to that observed in myocytes. RCC magnitude decreased as the time between the last electrical stimulation and the RCC was increased (rest decay). RCC rest decay closely paralleled that of postrest twitches, suggesting that SR Ca loss is responsible for this process. Paired RCC experiments were used to investigate RCC relaxation and rest decay. When a second RCC (RCC2) was induced immediately after the first (RCC1), a large contracture was still observed (RCC2/RCC1 x 100 = 77.8 +/- 7.3%, mean +/- SD), indicating that the SR resequestered the majority of Ca on rewarming. This fraction was increased (to 92.9 +/- 5.5%) if Na and Ca-free solution was used during RCCs and rewarming, indicating that Na-Ca exchange also contributes to RCC relaxation. Increasing the interval between paired RCCs led to a decrease in RCC2, analogous to rest decay. This rest decay was abolished by inhibiting Na-Ca exchange, indicating that SR Ca loss during rest is mediated primarily by this process. RCCs were abolished by 10 mM caffeine. Ryanodine (1 microM) greatly accelerated RCC rest decay but had less effect on RCCs generated immediately after a train of stimulation. This accelerated rest decay was also dependent on Na-Ca exchange.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.