Abstract

A nonlinear differentiator being fit for rapid convergence is presented, which is based on singular perturbation technique. The differentiator design can not only sufficiently reduce the chattering phenomenon of derivative estimation by introducing a continuous power function, but the dynamical performances are also improved by adding linear correction terms to the nonlinear ones. Moreover, strong robustness ability is obtained by integrating nonlinear items and the linear filter. The merits of the rapid-convergent differentiator include the excellent dynamical performances, restraining noises sufficiently, avoiding the chattering phenomenon and being not based on system model. The theoretical results are confirmed by computer simulations and an experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.