Abstract
Consider the problem of control selection in complex dynamical and environmental scenarios where model predictive control (MPC) proves particularly effective. As the performance of MPC is highly dependent on the efficiency of its incorporated search algorithm, this work examined hill climbing as an alternative to traditional systematic or random search algorithms. The relative performance of a candidate hill climbing algorithm was compared to representative systematic and random algorithms in a set of systematic tests and in a real-world control scenario. These tests indicated that hill climbing can provide significantly improved search efficiency when the control space has a large number of dimensions or divisions along each dimension. Furthermore, this demonstrated that there was little increase in search times associated with a significant increase in the number of control configurations considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.