Abstract

AbstractQuantitative sodium magnetic resonance imaging permits noninvasive measurement of the tissue sodium concentration (TSC) bioscale in the brain. Computing the TSC bioscale requires reconstructing and combining multiple datasets acquired with a non‐Cartesian acquisition that highly oversamples the center of k‐space. Even with an optimized implementation of the algorithm to compute TSC, the overall processing time exceeds the time required to collect data from the human subject. Such a mismatch presents a challenge for sustained sodium imaging to avoid a growing data backlog and provide timely results. The most computationally intensive portions of the TSC calculation have been identified and accelerated using a consumer graphics processing unit (GPU) in addition to a conventional central processing unit (CPU). A recently developed data organization technique called Compact Binning was used along with several existing algorithmic techniques to maximize the scalability and performance of these computationally intensive operations. The resulting GPU+CPU TSC bioscale calculation is more than 15 times faster than a CPU‐only implementation when processing 256 × 256 × 256 data and 2.4 times faster when processing 128 × 128 × 128 data. This eliminates the possibility of a data backlog for quantitative sodium imaging. The accelerated quantification technique is suitable for general three‐dimensional non‐Cartesian acquisitions and may enable more sophisticated imaging techniques that acquire even more data to be used for quantitative sodium imaging. © 2013 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 23, 29–35, 2013.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.