Abstract

(), a core clock gene, encodes a circadian rhythm protein which has been shown to control mammary metabolism in rodents. Whether regulates milk component synthesis such as α-casein protein in bovine mammary cells is unknown. Thus, we used gene silencing technology to determine if silencing could affect α-casein synthesis and cell growth in cultured primary bovine mammary epithelial cells (BMEC). The BMEC were established by enzymatic digestion of mammary tissue from mid-lactation cows. A transient-transfection technique was used to insert a small interfering RNA (siRNA) oligonucleotide specific for to inhibit transcription. Control and siRNA-transfected cells were cultured for 48 h. qRT-PCR and ELISA analysis showed that silencing enhanced the synthesis of 2 kinds of α-casein ( < 0.05) through upregulating the mRNA level of and ( < 0.01). Furthermore, the 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) results demonstrated that cell proliferation was not affected ( > 0.05). These data led us to hypothesize that PER2 protein may potentially play an important role in the control of milk protein synthesis and, hence, represents a target that can be used to regulate protein synthesis rate during lactation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call