Abstract
Ag3PO4 nanoparticles (NPs) was prepared through a facile coprecipitation method, and was first found to have excellent laccase-mimicking catalytic activity. The study confirms that Fumonisin B1 (FB1) can effectively hinder the production of superoxide anion (O2-) between Ag3PO4 NPs and dissolved oxygen, and further inhibit laccase-mimicking activity of Ag3PO4 NPs. Thus, a novel rapid colorimetric sensor for FB1 analysis in cereal was first established using laccase-mimicking activity as sensing signal. The absorbance variation of sensing solution is directly related to the amount of FB1, and the color change is further combined with smartphone for quantitively analysis of FB1. The limit of detection (LOD) of the sensor is determined as low as 1.73μg·L-1, which is far lower than the maximum residue limits (MRLs) of FB1 set by European Commission and US Food and Drug Administration (FDA). The average recovery of 87.8-104.5% for FB1 detection was obtained in cereal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.