Abstract

A novel and highly sensitive enzyme inhibition assay was developed for the rapid detection of the organophosphate pesticide dichlorvos and the carbamate pesticide carbofuran. It achieves signal amplification by the secondary catalysis of platinum nanoparticles. Acetylcholinesterase (AChE) is capable of catalyzing the hydrolysis of acetylthiocholine to form thiocholine. Thiocholine causes the aggregation of citrate-capped platinum nanoparticles which then lose their peroxidase-mimicking properties. After addition of pesticides, the activity of AChE is inhibited, less thiocholine is produced, less aggregation occurs, and the peroxidase-mimetic properties are increasingly retained. In the presence of tetramethylbenzidine and H2O2, a deep blue coloration with an absorption maximum at 650nm will be formed. The assay was applied to the determination of dichlorvos and carbofuran, and detection limits of 2.3μg·L-1 and 1.4μg·L-1 were obtained, respectively. Recovery experiments with spiked tap water and pears gave satisfactory relative standard deviations. Graphical abstract The blue product formed by platinum nanoparticle-catalyzed oxidation of 3,3'5,5'-tetramethylbenzidine (TMB) by H2O2 is reduced if acetylthiocholine (ATCh) is hydrolyzed by acetylcholinesterase (AChE) to form thiocholine. However, if AChE is inhibited by pesticides, color formation will recover.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.