Abstract
Development of potential sensors is inevitable for the detection of environmental pollutants including toxins, organic pollutants and heavy metal which cause hazardous effect to human and other living organisms. The present study is to develop silver nanoparticle (Ag NPs) based sensor for the accurate, sensitive and selective colorimetric detection of Hg2+ ions from aqueous samples at nano molar level. The nanoparticles were synthesized chemically and it was stabilized by polyvinylpyrrolidone (PVP). The prepared particles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), particle analysiser and Zetasizer. The UV-visible spectra of Ag NPs showed absorbance maximum at 392 nm. The average diameter of Ag NPs was determined to be 6 ± 0.9 nm by using particle analyzer. The zeta sizer analysis showed that the PVP stabilized Ag NPs possessed a zeta potential of -35.56 ± 3 mV. The Ag NPs-methionine conjugate showed the colour change from the brownish yellow colour to colourless when it was reacted with mercury. The Ag NPs conjugated methionine is sensitive to mercury and detects the mercury at nano molar level. The influence of other metal ion did not interfere with the detection and quantification of Hg2+. The detection of Hg2+ was also performed with paper strip and agarose gel method. The Ag NPs conjugate with methionine can applied for the detection of Hg2+ from various aqueous samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.