Abstract

This paper proposes a novel rapid circular microfluidic mixer for micro-total-analysis-systems (mu-TAS) applications in which an unbalanced driving force is used to mix fluids in a circular chamber at low Reynolds numbers (Re). The microfluidic mixer has a three-layered structure and is fabricated on low-cost glass slides using a simple and reliable fabrication process. Using hydrodynamic pumps, fluids are driven from two inlet ports into a circular mixing chamber. Each inlet port separates into two separate channels, which are then attached to opposite sides of the 3-dimensional (3-D) circular mixing chamber. The unequal lengths of these inlet channels generate an unbalanced driving force, which enhances the mixing effect in the mixing chamber. Numerical simulations are performed to predict the fluid phenomena in the mixing chamber and to estimate the mixing performance under various Reynolds number conditions. The numerical results are verified by performing flow visualization experiments. A good agreement is found between the two sets of results. The numerical and experimental results reveal that the mixing performance can reach 91% within a mixing chamber of 1 mm diameter at a Reynolds number of Re=3. Additionally, the results confirm that the unbalanced driving force produces a flow rotation in the circular mixer at low Reynolds numbers, which significantly enhances the mixing performance. The novel micromixing method presented in this study provides a simple solution for mixing problems in Lab-on-a-chip systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.