Abstract

The conversion of hexavalent chromium (Cr(VI)), a highly poisonous heavy metal found in natural environment, to less poisonous trivalent chromium (Cr(III)) has attracted a lot of interest. However, little interest has been paid to the development of metal-free catalysts. Here, we demonstrate for the first time a molecular engineering strategy to synthesize a range of donor-acceptor conjugated polymer photocatalysts, which can significantly increase the reduction efficiency of Cr(VI) by a factor of 5.2, corresponding to a significant change in the reduction reaction rate constant (from 0.0337 to 0.1740 min−1). In addition, the apparent quantum efficiency (AQE) of Cr(VI) removal was obtained, and the optimized photocatalyst (Py-SO1) could achieve the highest apparent quantum efficiency at wavelength of 420 nm in those samples. Despite the narrow light absorption of Py-SO1 polymer, its excellent exciton separation efficiency and efficient electron output enabled it to achieve excellent performance in photoreduction of Cr(VI), surpassing that of the reported metal-free photocatalysts. The results show that the present work provides a new perspective for designing suitable environmental remediation catalysts based on molecular engineering strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call