Abstract

Cancer continues to be a significant cause of non-traumatic pediatric mortality. Diagnosis of pediatric solid tumors is paramount to prescribing the correct treatment regimen. Recent efforts have focused on non-invasive methods to obtain tumor tissues, but one of the challenges encountered is the ability to obtain an adequate amount of viable tissue. In this study, a wireless, inductor-capacitor (LC) sensor was employed to detect relative permittivity of pediatric tumor tissues. There is a comparison of resonant frequencies of tumor tissues between live versus dead tissues, the primary tumor tissue versus tissue from the organs of origin or metastasis, and treated versus untreated tumors. The results show significant shifts in resonant frequencies between the comparison groups. Dead tissues demonstrated a significant shift in resonant frequencies compared to alive tissues. There were significant differences between the resonant frequencies of normal tissues versus tumor tissues. Resonant frequencies were also significantly different between primary tumors compared to their respective metastases. These data indicate that there are potential clinical applications of LC technology in the detection and diagnosis of pediatric solid tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.