Abstract
Microdroplet reactions have aroused much interest due to significant reaction acceleration (e.g., ultrafast protein digestion in microdroplets could occur in less than 1 ms). This study integrated a microdroplet protein digestion technique with automated sample flow injection and online mass spectrometry (MS) analysis, to develop a rapid and robust method for structural characterization of monoclonal antibodies (mAbs) that is essential to assess the antibody drug's safety and quality. Automated sequential aspiration and mixing of an antibody and an enzyme (IdeS or IgdE) enabled rapid analysis with high reproducibility (total analysis time: 2 min per sample; reproducibility: ∼2% coefficient of variation). Spraying the sample in ammonium acetate buffer (pH 7) using a jet stream source allowed efficient digestion of antibodies and efficient ionization of resulting antibody subunits under native-pH conditions. Importantly, it also provided a platform to directly study specific binding of an antibody and an antigen (e.g., detecting the complexes mAb/RSFV antigen and F(ab')2/RSVF in this study). Furthermore, subsequent tandem MS analysis of a resulting subunit from microdroplet digestion enabled localizing post-translational modifications on particular domains of a mAb in a rapid fashion. In combination with IdeS digestion of an antibody, additional tris(2-carboxyethyl)phosphine (TCEP) reduction and N-glycosidase F (PNGase F) deglycosylation reactions that facilitate antibody analysis could be realized in "one-pot" spraying. Interestingly, increased deglycosylation yield in microdroplets was found, simply by raising the sample temperature. We expect that our method would have a high impact for rapid characterization of monoclonal antibodies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.