Abstract

AbstractWater disinfection is a crucial challenge for humanity. Approaches that are effective, cheap, environmentally friendly, and do not promote gene exchange between bacteria are urgently required. Strongly oxidizing radicals are highly promising to achieve this as they lead to bacterial activation at high efficiencies. However, sources to consistently generate these radicals are limited to high energy UV/H2O2 treatments requiring a large energy input. Here the use of abundant, cheap, brownmillerite (Ca2Fe2O5) is demonstrated as an efficient radical generation material under dark conditions, showing a seven order of magnitude decrease in bacterial concentration over 10 min. This decrease is attributed to the release of interlayer Ca2+ from the layered structure of Ca2Fe2O5 and hydroxyl radical generation. The efficacy of Ca2Fe2O5 is demonstrated by disinfecting turbid sewage sludge. The identification of this cheap, abundant, and nontoxic antibacterial material will provide an opportunity for broad scale clean water generation globally, and address the United Nations’ Sustainable Development Goal of clean water and sanitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.