Abstract

Recent methods for the analysis of molecular kinetics from massive molecular dynamics (MD) data rely on the solution of very large eigenvalue problems. Here we build upon recent results from the field of compressed sensing and develop the spectral oASIS method, a highly efficient approach to approximate the leading eigenvalues and eigenvectors of large generalized eigenvalue problems without ever having to evaluate the full matrices. The approach is demonstrated to reduce the dimensionality of the problem by 1 or 2 orders of magnitude, directly leading to corresponding savings in the computation and storage of the necessary matrices and a speedup of 2 to 4 orders of magnitude in solving the eigenvalue problem. We demonstrate the method on extensive data sets of protein conformational changes and protein-ligand binding using the variational approach to conformation dynamics (VAC) and time-lagged independent component analysis (TICA). Our approach can also be applied to kernel formulations of VAC, TICA, and extended dynamic mode decomposition (EDMD).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.