Abstract

The concept of high-throughput screening sheds new light on fabrication and analysis of materials. Herein, a combinatorial surface-modified platform with biochemical gradients was developed through thiol-ene "click" chemistry by adjusting the intensity of ultraviolet (UV) irradiation. Contact angle, X-ray photoelectron spectroscopy, and ellipsometry measurement results demonstrated that the sulfhydryl molecules including polyethylene glycol and RGD (arginine-glycine-aspartic acid) and REDV (arginine-glutamic acid-aspartic acid-valine) peptides can be directly attached onto alkene-modified substrates, in which the graft density can be well controlled by the intensity of UV irradiation. The multistep attachment of different molecules onto substrates is archived via the multistep UV-initiated thiol-ene "click" reaction. The high-throughput arrays with the gradient density of single ligand and the orthogonal gradient density of two ligands were rapidly fabricated via the one-step UV gradient irradiation and the two-step orthogonal UV gradient-initiated thiol-ene "click" reaction. Endothelial cells (ECs) and smooth muscle cells (SMCs) were cocultured on the array with the orthogonal gradient density of RGD and REDV to screen the peptide combination with high EC selectivity, which is essential for in situ endothelialization during stent implant. From 64, 8 × 8, combinations investigated, a special combinatorial surface representing the really high competitiveness of ECs over SMCs was screened. This platform puts forward a facile, high-throughput method to study the combinatorial variation of biochemical signals to cell behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call