Abstract

Experimental studies of core-excited molecules using three-dimensional multi particle momentum imaging are presented where bond rearrangement processes in dication species are analysed. The aim of the study is to understand the relation between the geometric changes associated with core-excited states and the kinetic energy released in particular molecular dissociation processes. The kinematics of individual fragmentation channels are studied by fully three-dimensional momentum imaging of fragments in coincidence. Examples are presented where the high efficiency of the instrument and the fully three-dimensional momentum capabilities are exploited to understand nuclear motion leading to bond rearrangement in core-excited states. We identify bond-rearrangement processes in water, carbonyl sulphide and acetylene which are initiated in the core-excited state. In water this is evidenced by the H+2/O+ ion pair, and in carbonyl sulphide the OS++C+ pair is the fingerprint of this reaction. In acetylene the H+2 + C+2 ion pair indicates a molecular geometry that changes from linear to strongly bent. We measure the angular distribution of all fragments and fragment pairs and for the bond rearrangement processes in water and in core-excited acetylene the angular distribution of fragments suggests that the bond rearrangement is very rapid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call