Abstract

Four strains of bacteria, 9 strains of fungi and 20 strains of actinomycetes capable of utilizing metsulfuron-methyl as sole carbon and energy source were isolated from a metsulfuron-methyl-treated soil by the enrichment culture method. A fungus named DS11F was selected as the most highly effective one according to the maximum tolerance concentration of 1,200 mg l−1 and metsulfuron-methyl-degrading rate of 0.0716 g g−1 cells h−1, and was identified as an unknown strain of Penicillium sp. on the basis of colony growth, morphology and biochemical characteristics.␣Through liquid pure culture, the optimal metsulfuron-methyl-degrading conditions of DS11F were determined to be metsulfuron-methyl concentration 22.6 mg l−1, inoculum concentration 12.25 mg l−1, pH 7.0 and temperature 30°C. As additional C sources, supernatant of soaked compost could increase metsulfuron-methyl degradation by 8%, but glucose was ineffective. DS11F inoculation was found to significantly enhance the degradation of metsulfuron-methyl in soil, with the reduction of the concentration reaching 50% in 6 days. Admixture of compost could promote metsulfuron-methyl degradation to some extent. The growth of the inocula in the soils remained dominant and degradation resumed immediately when metsulfuron-methyl was applied again. The results show that addition of the isolated Penicillium sp. enhances the degradation of metsulfuron-methyl in water and soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call