Abstract
In Bacillus subtilis, addition of chemotactic attractant causes an immediate change in distribution of methyl groups on methyl-accepting chemotaxis proteins (MCPs), whereas in Escherichia coli, it causes changes that occur throughout the adaptation period. Thus, methylation changes in B. subtilis are probably related to excitation, not adaptation. If labeled cells are exposed to excess nonradioactive methionine, then attractant causes immediate 50% delabeling of the MCPs, suggesting that a flux of methyl groups through the MCPs occurs. Methanol is given off at a high rate during the adaptation period and probably reflects demethylation of some substance to bring about adaptation. The fact that many radioactive methyl groups are lost immediately from the MCPs but only slowly arise as methanol is consistent with the hypothesis that they are transferred from the MCPs to a carrier from which methanol arises. Demethylation of this carrier may cause adaptation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.