Abstract

Oxygen supply is crucial in industrial application of microbial systems, such as Corynebacterium glutamicum, but oxygen transfer is often neglected in early strain characterizations, typically done under aerobic conditions. In this work, a new procedure for oxygen transfer screening is presented, assessing the impact of maximum oxygen transfer conditions (OTRmax) within microtiter plate-based cultivation for enhanced throughput. Oxygen-dependent growth and productivity were characterized for C. glutamicum ATCC13032 and C. glutamicum DM1933 (lysine producer). Biomass and lysine product yield are affected at OTRmax below 14mmolL(-1)h(-1) in a standardized batch process, but not by further increase of OTRmax above this threshold value indicating a reasonable tradeoff between power input and oxygen transfer capacity OTRmax. The described oxygen transfer screening allows comparative determination of metabolic robustness against oxygen transfer limitation and serves identification of potential problems or opportunities later created during scale-up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.