Abstract

The development of nanoparticle-based targeted therapeutics for the treatment of cancer requires a well-defined understanding of the tumor microenvironment, which is challenging due to tumor complexity and heterogeneity. Recent advancements in three-dimensional (3D) cell models such as tumor-on-a-chip devices can overcome some of these challenges by providing coculture in vitro systems (tumor surrounded by tubular endothelial cells) that mimic native cellular environments to accurately study the enhanced permeability and retention (EPR) potential of drug delivery systems under flow conditions. However, inducing “leaky” vasculature in endothelial cells surrounding solid tumors in microfluidic devices is not readily controllable and highly dependent on tumor cell identity. Utilizing a microfluidic tumor model (MTM) consisting of a tumor region surrounded by a 3D microvascular network, we have simulated the EPR effect by activating a known regulator of endothelial junction formation and edema: the transient ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.