Abstract

Circadian rhythms have a cycle length of about 24 hours, i.e. a 24-hour internal clock. In order to adapt to the periodic changes of the circadian environment, almost all organisms on the earth, including algae, bacteria, plants, animals, etc., have evolved a special system-the circadian clock. It helps organisms to adapt to the daily changes in the environment and maintains the physiological process and the behavior in synchronization with the environment changes. Circadian rhythms are composed of an intracellular feedback loop that drives the expression of molecular components and their constitutive protein products to oscillate over a period of about 24 hours. Almost every aspect of the body's functions, including behavior and physiology, is regulated by the circadian clock, and shows obvious daily rhythms, such as sleep and wakefulness, alertness, body temperature fluctuations, urinary system, hormone secretion, immune regulation, and cytokine release. Circadian factors are also increasingly recognized for potentially affecting the occurrence, progression, treatment, and prognosis of a variety of diseases. This paper discusses several methods for measuring circadian behavior disorders in mice for different purposes, and shares experimental operations and analysis ideas, including the use of metabolism cage, wheel running activity, jet lag, lengthened light, bones photoperiod, as well as the T7-cycle. In addition, this paper also studies the possible reasons for variations caused by genetic backgrounds and light conditions. Given these methods, researchers can choose appropriate experiments to evaluate the influence of genetic factors, environmental factors or diseases on circadian behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call