Abstract

Variation in beta dose rate within rocks may impact the results of rock surface luminescence dating, for both the burial age of cobbles and exposure age of rock surfaces. Current methods of rock surface luminescence dating assume that radionuclides are homogeneously distributed inside rocks. In this study, two rapid methods based on beta counting and on a portable XRF instrument were developed to measure the radioactivity of rock slices. These methods were applied to rock slices from four glaciofluvial granite cobbles that had previously been used for equivalent dose determination to test whether beta dose variation could be observed. Results from beta counting and K content from XRF show similar patterns and both vary along the depth profiles, but the magnitude of this variability is very different amongst the four cobbles. In rocks where the dose rate is highly variable, bleaching may not be the only source of variation of Ln/Tn or equivalent dose (De) along the luminescence-depth profile of cobbles, and it may be necessary to measure the beta dose rate for every single slice to determine whether multiple bleaching events are recorded or variations in De are due to dose rate heterogeneity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.