Abstract

The evaluation of water binding free energies around solute molecules is important for the thermodynamic characterization of hydration or association processes. Here, a rapid approximate method to estimate water binding free energies around (bio)macromolecules from a single molecular dynamics simulation is presented. The basic idea is that endpoint free-energy calculation methods are applied and the endpoint quantities are monitored on a three-dimensional grid around the solute. Thus, a gridded map of water binding free energies around the solute is obtained, that is, from a single short simulation, a map of favorable and unfavorable water binding sites can be constructed. Among the employed free-energy calculation methods, approaches involving endpoint information pertaining to actual thermodynamic integration calculations or endpoint information as exploited in the linear interaction energy method were examined. The accuracy of the approximate approaches was evaluated on the hydration of a cage-like molecule representing either a nonpolar, polar, or charged water binding site and on α- and β-cyclodextrin molecules. Among the tested approaches, the linear interaction energy method is considered the most viable approach. Applying the linear interaction energy method on the grid around the solute, a semi-quantitative thermodynamic characterization of hydration around the whole solute is obtained. Disadvantages are the approximate nature of the method and a limited flexibility of the solute. © 2016 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.