Abstract

Rapid annealing techniques using graphite strip heaters [1], tungsten-halogen lamps [2], and conventional arc lamps [3] have been gaining favor to provide controllable activation of ion implants while minimizing the diffusion of the implanted dopant. These conventional heat sources have given good results, but they all suffer from limitations in power output and/or the ability to change power levels rapidly. The water-wall d.c. arc lamp overcomes these limitations and allows precise control and excellent reproducability of the anneal cycle. The high power output and excellent optical coupling of the water-wall lamp allows ilumination from one side of the sample. The wafer temperature can then be directly monitored with a pyrometer and the fast response time of the lamp allows the pyrometer output to control the lamp power and, hence, provide direct feedback control of the wafer temperature. Direct control is important to overcome variations caused by different doping levels or dielectric coatings on the wafers. Annealing experiments using the water-wall lamp have shown that good activation and essentially complete removal of implant damage can be achieved while moving the junction only minimally [4,5]. The degree of dopant diffusion (generally on the order of 1000 Å) is small compared to device dimensions but is somewhat more than would be expected from classical diffusion theory using published diffusion coefficients. The differences depend on the implanted species and models are being developed to explain the discrepancies. The vary rapid heating and cooling rates obtainable with the water-wall lamp offer a great deal of flexibility in the time/temperature cycles used for annealing (or other rapid thermal processes). There are indications that the ability to achieve a rapid cooling rate allows more complete activation of high dose implants and rapid heating rates may reduce the residual damage and amount of diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call