Abstract

Duck spleen necrosis disease (DSND) caused by Novel Duck Reovirus (NDRV), is an emerging infectious disease that causes severely threaten to duck industry. Currently, the popular conventional RT-PCR technique for detecting NDRV is time consuming. So, it is essential to develop a rapid and accurate molecular diagnosis techniques of the pathogen for the purpose to effective control of the disease. In our study, a simple, rapid and reliable detection method was developed by an isothermal reverse transcription-recombinase polymerase amplification (RT-RPA). The RT-RPA primers were designed targeting the S3 gene of NDRV, and its specificity was verified by testing a series of other waterfowl pathogens. A total of 20 field and experimental samples from infected ducklings were tested by the RT-RPA and compared with the results of the conventional RT-PCR and the quantitative RT-PCR simultaneously. The RT-RPA method could detect as little as 4.14 × 102 copies/μl of the target gene in the sensitivity analysis, which was 10×higher sensitive than the conventional RT-PCR. The major advantage of the RT-RPA method is that it could be performed as an isothermal reaction at 37 ℃ and completed within 20 min. In addition, no cross-reactivity was detected with other waterfowl-origin viruses. Also, the amplified products could be visualized faster, without the gel electrophoresis, by adding the SYBR Green I and observing them under an ultraviolet light. The newly developed RT-RPA method offers a simple, rapid and accurate for rapid detection of NDRV, which especially useful in on-site facilities and resource-limited areas.

Highlights

  • Duck spleen necrosis disease (DSND) caused by Novel Duck Reovirus (NDRV), is an emerging infectious disease that causes severely threaten to duck industry

  • The RT-Recombinase polymerase Amplification (RPA) primers were designed based on the S3 gene of NDRV, and a series of other waterfowl-origin pathogens were detected by reverse transcription-recombinase polymerase amplification (RT-RPA)

  • The RT-RPA method proved to be repeatable and could detect as little as 3.48 × 10− 6 ng/μl of the standard plasmid DNA inserted with the viral S3 gene

Read more

Summary

Introduction

Duck spleen necrosis disease (DSND) caused by Novel Duck Reovirus (NDRV), is an emerging infectious disease that causes severely threaten to duck industry. The popular conventional PCR technique for detecting NDRV is time consuming. It is essential to develop a rapid and accurate molecular diagnosis techniques of viral pathogens for the purpose to prevent further disease transmission or outbreaks. Recombinase polymerase Amplification (RPA) is a new generation of simple, rapid and cost-effective molecular diagnosis technology, which has been applied to the molecular detection of various pathogens

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.