Abstract

The concerns regarding potential environmental release and ecological risks of multi-walled carbon nanotubes (MWCNTs) rise with their increased production and use. As a result, there is the need for an analytical method to determine the environmental concentration of MWCNTs. Although several methods have been demonstrated for the quantification of well-characterized MWCNTs, applying these methods to field samples is still a challenge due to interferences from unknown characteristics of MWCNTs and environmental media. To bridge this gap, a recently developed microwave-induced heating method was investigated for the quantification of MWCNTs in field samples. Our results indicated that the microwave response of MWCNTs was independent of the sources, length, and diameter of MWCNTs; however, the aggregated MWCNTs were not able to convert the microwave energy to heat, making the method inapplicable. Thus, a pre-treatment process for dispersing bundled MWCNTs in field samples was crucial for the use of the microwave method. In the present paper, a two-step pre-treatment procedure was proposed: the aggregated MWCNTs loaded environmental samples were first exposed to high temperature (500°C) and then dispersed by using an acetone-surfactant solution. A validation study was performed to evaluate the effectiveness of the pre-treatment process, showing that an 80-120% recovery range of true MWCNT loading successfully covered the microwave-measured MWCNT mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.