Abstract
Abstract A novel rapid, uniform and non-contamination in-situ solidification method for alumina suspension by DCC-HVCI method using MgO sintering additive as coagulating agent was reported. MgO was used to release Mg2+ in suspensions via reaction with acetic acid generated from glycerol diacetate (GDA) at elevated temperature as well as to improve density and suppress grain growth of alumina ceramics during sintering. Influence of adding 0.7 wt% MgO with 2.0 vol% GDA in alumina suspension on coagulation process and properties of green bodies and sintered samples were investigated. It was indicated that the controlled coagulation of the suspension could be achieved after treating at 70 °C for 10 min. Homogeneous composition distribution of Mg element in EDS result indicated the uniform solidification of suspensions. Compressive strength of wet-coagulated bodies is 2.09±0.25 MPa. Dense alumina ceramics with relative density of 99.2% and flexural strength of 354±16 MPa sintered at 1650 °C for 4 h present homogeneous microstructure. The result indicated that the novel DCC-HVCI method via a sintering additive reaction with no contamination, short coagulation time and uniform in-situ solidification is a promising colloidal forming method for preparing high-performance ceramic components with complex shape.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.