Abstract
The presence of minute quantities of water in organic solvents can affect the progress of many reactions and cause unnecessary losses and even safety accidents in the chemical industry, especially in the productions process of organic fine chemicals. Therefore, it is necessary to carry out high-performance strategies for trace water detections in commonly used organic solvents. In this work, a fluorescent sensing system based on competitive binding of protons has been developed, demonstrating remarkable responses by UV–vis absorption and fluorescence two-modes toward a trace amount of water in organic solvents including 1,4-dioxane (Diox), tetrahydrofuran (THF), acetonitrile (MeCN), acetone (ACE), dimethylsulfoxide (DMSO) and mixed organic solvents (THF: MeCN=1: 1). The key component of the sensing system is a newly designed fluorophore NBD-PMA, which can be deprotonated to form a dynamic non-luminescent adduct, namely NBD-PMA-F, by an organic fluoride salt tetrabutylammonium fluoride (TBAF). NBD-PMA-F can be reprotonated via using trace water, exhibiting fluorescence turn on of the system. The as-prepared sensing system shows superior sensitivity, low detection limits (v/v, 0.0007 %), quick response speed (≤1.2 s) and good reversibility. Moreover, naked-eye visual rapid detection has also been successfully realized at ambient temperature, which demonstrated their practical applications value for trace water determinations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.