Abstract

The rapid and ultra-sensitive detection of trace elements in liquid is a primary concern for researchers. In this study, a partial Leidenfrost effect superhydrophobic (PLSHB) array surface was used for rapid in situ evaporation enrichment of sample droplets. Within 4 min, a 50 μL droplet sample was completely evaporated, resulting in all solutes in it being concentrated within a circular range measuring approximately 350 μm in diameter, without the formation of a coffee ring structure. The limits of detection for six metals (Pb, Ba, Be, Mn, Cr, Cu) in water were determined to be as follows: 0.82 μgL−1, 0.27 μgL−1, 0.033 μgL−1, 0.136 μgL−1, 0.241 μgL−1, and 0.083 μgL−1. Furthermore, laser-induced breakdown spectroscopy (LIBS) was employed to detect the enriched solutes from ten liquid samples with identical concentrations on the PLSHB array surface; these measurements exhibited a relative standard deviation (RSD) of only 3.7%. Spike experiments involving the addition of the aforementioned six metals into drinking water demonstrated recovery rates ranging from 85.7% to 117.7%. Therefore, the application potential of PLSHB array surface enhanced LIBS for rapid, stable, and ultra-sensitive detection and analysis of trace metal elements across various fields such as industry, environmental science, and biomedicine might be highly promising.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call