Abstract

Surface acoustic waves have considerable potential to rapidly generate micron to submicron sized aerosols due to the capillary wave at the liquid–air interfacial boundary. The atomization process, however, is often found to be unstable and discontinuous due to the inconsistency of the droplet position and the lack of accuracy of resonance frequency, resulting in less efficient atomization performance. We developed a rapid and sustainable surface acoustic wave (SAW) atomizer to generate aerosols in a robust, straightforward, and stable mechanism for a continuous, consistent, and reliable deposition of a functional material (i.e., poly(3,4-ethylenedioxythiophene) polystyrene sulfonate [PEDOT:PSS]). Two identical progressive focused surface acoustic wave devices were arranged in angles and in opposite directions with 1 mm wide opening to regulate appropriate amount of liquid sample to be atomized. Several parametrical studies (i.e., on the design of the SAW device, liquid flow rate, applied voltage, and depo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.