Abstract

Electroconvulsive therapy (ECT) is a highly effective and fast-acting treatment for depression. Despite a long history of clinical use, its mechanism of action remains poorly understood. Recently, a novel cellular mechanism of antidepressant action has been proposed: the phenotype of mature brain neurons is transformed to immature-like one by antidepressant drug treatments. We show here that electroconvulsive stimulation (ECS), an animal model of ECT, causes profound changes in maturation-related phenotypes of neurons in the hippocampal dentate gyrus of adult mice. Single ECS immediately reduced expression of mature neuronal markers in almost entire population of dentate granule cells. After ECS treatments, granule cells showed some of physiological properties characteristic of immature granule cells such as higher somatic intrinsic excitability and smaller frequency facilitation at the detate-to-CA3 synapse. The rapid downregulation of maturation markers was suppressed by antagonizing glutamate NMDA receptors, but not by perturbing the serotonergic system. While single ECS caused short-lasting effects, repeated ECS induced stable changes in the maturation-related phenotypes lasting more than 2 weeks along with enhancement of synaptic excitation of granule cells. Augmentation of synaptic inhibition or blockade of NMDA receptors after repeated ECS facilitated regaining the initial mature phenotype, suggesting a role for endogenous neuronal excitation in maintaining the altered maturation-related phenotype probably via NMDA receptor activation. These results suggest that brief neuronal activation by ECS induces “dematuration” of the mature granule cells and that enhanced endogenous excitability is likely to support maintenance of such a demature state. The global increase in neuronal excitability accompanying this process may be relevant to the high efficacy of ECT.

Highlights

  • Granule cells (GCs) in the hippocampal dentate gyrus (DG) have been implicated in the pathophysiological mechanisms of neuropsychiatric disorders including depression and schizophrenia, and have been suggested to be an important target for both pharmacological and physical therapeutic treatments [1,2,3,4,5,6]

  • electroconvulsive stimulation (ECS)-treated granule cells partially exhibit physiological properties resembling immature neurons Above results demonstrate that ECS strongly downregulates several markers for mature GCs, which resembles the effects of chronic selective serotonin reuptake inhibitor (SSRI) treatments on the dentate GCs [7, 10, 20]

  • We examined the electrophysiological properties of ECS-treated GCs

Read more

Summary

Introduction

Granule cells (GCs) in the hippocampal dentate gyrus (DG) have been implicated in the pathophysiological mechanisms of neuropsychiatric disorders including depression and schizophrenia, and have been suggested to be an important target for both pharmacological and physical therapeutic treatments [1,2,3,4,5,6]. Imoto et al Molecular Brain (2017) 10:8 These changes in the maturation-related phenotypes of GCs were not observed after short-term treatment of fluoxetine, and the efficacy of fluoxetine is quite variable among individual mice [7, 8]. Such unstable and unpredictable nature of the effects of fluoxetine well mimics common clinical observations in antidepressant medication such as delayed emergence of therapeutic effects and treatment resistance [9]. This proposal has been supported by demonstration of similar SSRI-induced changes in the neuronal maturation status in other brain regions [11, 12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call