Abstract

Tumor exosomes that inherit specific molecules from their parent cells are emerging as ideal biomarkers in cancer diagnostics. Most currently available exosome isolation and detection methods are time-consuming and non-specific; thus, rapid and specific exosome detection methods are needed both clinically and in research. Here, a dual-functional platform is reportedcomposed of reversible conjunction and "off-on" signal responses. Fe3O4@SiO2@TiO2 particles with high affinity were applied to capture exosomes, and model exosomes could be isolated from solution within 20min with a capture efficiency of 91.5%. An "on-off" fluorescence response PSMA aptasensor was constructed with improved selectivity to detect tumor exosomes by recording the fluorescence intensity with λex/em = 557/580nm. The standard curve for detecting tumor exosomes with the aptasensor was calculated as y = 371.7x + 66.17, ranging from 0.05 to 1 × 104 particles/μL, with R2 = 0.9737, and a detection limit of 5 × 102 particles/μL in solution. This method was successfully applied to clinical samples, and the results showed better performance in distinguishing prostate cancer patients and healthy samples than the traditional nanoparticle-tracking analysis (NTA) method. This rapid and accurate detection method for prostate cancer may aid in rapid clinical diagnosis. Integrating quickly TiO2-based isolation with sensitive and specific "on-off" detection of PCa exosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call