Abstract

The properties of voltage-dependent Na channels modified by veratridine (VTD) were studied in voltage-clamped nodes of Ranvier of the frog Rana pipiens. Two modes of gating of VTD-modified channels are described. The first, occurring on a time scale of milliseconds, is shown to be the transition of channels between a modified resting state and a modified open state. There are important qualitative and quantitative differences of this gating process in nerve compared with that in muscle (Leibowitz et al., 1986). A second gating process occurring on a time scale of seconds, was originally described as a modified activation process (Ulbricht, 1969). This process is further analyzed here, and a model is presented in which the slow process represents the gating of VTD-modified channels between open and inactivated states. An expanded model is a step in the direction of unifying the known rapid and slow physiologic processes of Na channels modified by VTD and related alkaloid neurotoxins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call