Abstract
A method for the simultaneous and economical determination of many trace elements in human milk is developed. Two multi-element hollow cathode lamps (HCLs) were used instead of single-element HCLs to improve the sample throughput of flame atomic absorption spectroscopy (FAAS). The microwave digestion of milk is optimized prior to detection, and the performance characteristics of the improved analysis method are identified. Clinical samples are detected by both FAAS and inductively coupled plasma-optical emission spectroscopy (ICP-OES) for methodology evaluation. Results reveal that the proposed FAAS with multi-element HCLs could determine six essential minerals and trace elements within 15 min. This method provides a linear analytical range of 0.01-10 mg L(-1). For Ca, Cu, Fe, Mg, Mn, and Zn, the limits of determination are 1.5, 3, 1.8, 2.2, 2.1, and 1.3 microg L(-1), respectively. The mean relative standard deviations (RSDs) of intra- and interassays are lower than 7%. Excellent operational characteristics of rapidity, simplicity, and economy make the proposed method a promising one for the quantification of trace elements in human milk in clinics of underdeveloped areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.