Abstract

A rapid and simple method to amplify genomic DNA sequences flanking mini-Tn5 transposon insertion was developed. This technique can be used to determine the location and orientation of the transposon insertion within genomic DNA of the bacteria. Based on the mini-Tn5Km1 transposon sequence, PCR primers can be designed to specifically amplify the DNA sequences flanking mini-Tn5 transposon by inverse polymerase chain reaction (inverse PCR) directly, upstream and downstream of the transposon insertion. The method involves: (i) digestion with a restriction enzyme that does not cut mini-Tn5Km1 sequence; (ii) self-ligation under conditionsfavoring the production of monomeric circles; and (iii) inverse PCR reaction using primers designed from mini-Tn5Km1 sequence to amplify the DNA sequences flanking mini-Tn5Km1 transposon insertion. Feasibility and reliability of this method were demonstrated with mini-Tn5Km1 mutants of the microaerobic magnetic bacterium Magnetospirillum magneticum AMB-1 which are defective in magnetosomes synthesis. The inverse PCR products amplified from these mutant genomes showed the correct fragments as determined through Southern hybridization and DNA sequence analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call