Abstract

A low-cost and reliable analytical method based on the combination of a newly designed Fe3O4@Au as peroxidase mimetics, supported on smartphone analysis software package was proposed for the determination of glucose content in food samples. The nanocomposite was prepared by self-assembling technique, and the characterization was carried out using transmission electron microscopy (TEM), Fourier transforms infrared, and X-ray diffractometer. Record the color change of the solution with a smartphone camera and optimize the operation parameters and reaction conditions. A smartphone with a free self-developed app was accustomed live the RGB (red–greenblue) values of color intensity within the Fe3O4@Au system and were processed with Image J software before computationally convert them glucose concentrations. At the optimization experiment, reaction temperature of 60 °C, reaction time of 50 min and the amount of addition of Fe3O4@Au 0.0125 g was the optimal combination of detecting glucose smartphone color detection system. Hereon, the accuracy of the proposed method was evaluated by comparison between smartphone colorimetry and UV–vis spectrophotometer, a linear calibration in the range of 0.25 ∼ 15 mmol/L glucose was obtained with minimum detection limit of 1.83 and 2.25 μmol/L, respectively. The proposed method was applied effectively to the detection of glucose in actual samples. The results were in accordance with the conventional UV–vis spectrophotometer method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call