Abstract

It is important to develop rapid and sensitive screening assays to assess the biological effects of emerging contaminants. In this contribution, the ability to determine the molecular level effects of 17β-estradiol on single MCF-7 cells using Fourier transform infrared imaging spectroscopy (FT-IRIS) was investigated. The use of FT-IRIS enabled subcellular imaging of the cells and determination of a dose dependent response in mucin concentration at 24 and 48 h of incubation. The 48 h increase in mucin was comparable to increases in cellular proliferation (Pearson R = 0.978). The EC50 values for the E-screen and FT-IRIS assays were 2.29 and 2.56 ppt, respectively, indicating that the molecular changes, which are observed at the single cell level using FT-IRIS, are reflective of physiological changes that are observed as the cell population responds to 17ß-estradiol. The FT-IRIS method, when combined with principal component analysis, enabled differentiation and grouping of cells exposed to varying concentrations of 17ß-estradiol. The FT-IRIS method shows potential to be used as a rapid and sensitive screening technique for the detection of biological responses to different emerging contaminants in relevant cells or tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.