Abstract

Lindane is documented by the Environmental Protection Agency (EPA) as one of the most toxic registered pesticides. Conventional detection of lindane in the environment requires manual field sampling and complex, time-consuming analytical sample handling relying on skilled labor. In this study, an electrochemical sensing system based on a modified electrode is reported. The system is capable of detecting lindane in aqueous medium in only 20 s. The surface of a conventional carbon electrode is modified with a film of conductive polymer that enables detection of lindane down to 30 nanomolar. The electrode modification procedure is simple and results in a robust sensor that can withstand intensive use. The sensitivity of the sensor is 7.18 µA/µM and the performance was demonstrated in the determination of lindane in spiked ground water. This suggests that the sensor is potentially capable of providing useful readings for decision makers. The rapid and sensitive quantification of lindane in aqueous medium is one step forward to new opportunities for direct, autonomous control of the pesticide level in the environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.