Abstract

ABSTRACTIn this work, we demonstrate the label-free and ultrasensitive detection of troponin-T, cardiac biomarker using nanoporous membrane integrated on a microelectrode sensor platform. The nanoporous membrane allows for spatial confinement of the protein molecules. Antigen interaction with thiol immobilized antibody perturbs the electrical double layer. Charge perturbations are recorded as impedance change at low frequency using the principle of electrochemical impedance spectroscopy (EIS). The measured impedance change is used to quantitatively determine the concentration of troponin-T in tested sample. We have shown that sensitivity of sensor for troponin-T to be 1pg/mL. The accuracy and reliability of this sensor was tested by comparing the experimental troponin-T concentration values with a commercially available electrochemiluminescence assay measured with Roche Elecsys analyzer. Using this technique we were successful in detecting protein biomarkers in whole blood, human serum, and ionic buffers. This technology provides a robust analytical platform for rapid and sensitive detection of protein biomarkers, thus establishing this technology as an ideal candidate for biomarker screening in clinical settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.