Abstract

Cattle are considered the major reservoir for Escherichia coli O157:H7, one of the newly emerged foodborne human pathogens of animal origin and a leading cause of haemorrhagic colitis in humans. A sensitive test that can accurately and rapidly detect the organism in the food animal production environment is critically needed to monitor the emergence, transmission, and colonization of this pathogen in the animal reservoir. In this study, a novel multiplex polymerase chain reaction (PCR) assay was developed by using 5 sets of primers that specifically amplify segments of the eaeA, slt-I, slt-II, fliC, rfbE genes, which allowed simultaneous identification of serotype O157:H7 and its virulence factors in a single reaction. Analysis of 82 E. coli strains (49 O157:H7 and 33 non-O157:H7) demonstrated that this PCR system successfully distinguished serotype O157:H7 from other serotypes of E. coli and provided accurate profiling of the shiga-like toxins and the intimin adhesin in individual strains. This multiplex PCR assay did not cross-react with the background bacterial flora in bovine faeces and could detect a single O157:H7 organism per gram of faeces when combined with an enrichment step. Together, these results indicate that the multiplex PCR assay can be used for specific identification and profiling of E. coli O157:H7 isolates, and may be applied to rapid and sensitive detection of E. coli O157:H7 in bovine faeces when combined with an enrichment step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.