Abstract

Diazinon is a typical phosphorothionate, which is widely used to prevent and control harmful organisms that endanger the agriculture productions. However, it is among the most toxic substances and can cause damage to the environment, food and human health even in very low concentrations. Hence, ultra-sensitive screening methods are urgently required for the detection of this extensively used pesticide. In this study, a rapid and sensitive fluorescence resonance energy transfer (FRET) method was developed for low concentration detection of diazinon in food. The aptamer-modified upconversion nanoparticles (Apt-UCNPs) were synthesized and conjugated with graphene oxide (GO) through π-π interaction. Due to the FRET between UCNPs and GO, the fluorescence was quenched. When diazinon was added, the aptamer preferentially bound with it, caused the separation of GO, and resulted in the enhancement of fluorescent signal. Under the optimal conditions, a wide linear detection range from 0.05 to 500ng/mL was achieved, with a limit of detection (LOD) of 0.023ng/mL. The proposed method was successfully applied to measure diazinon in real samples. Results showed that the proposed nanosensor offers an efficient, specific and simple approach for the detection of diazinon in food and has a high potential for food safety and quality control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.