Abstract

Rapid, efficient, and selective removal of toxicants such as aristolochic acid I (AAI) from complex natural product systems is of great significance for the safe use of herbal medicines or medicine-food plants. Addressing this challenge, we develop a high-performance separation approach based on ionic covalent organic frameworks (iCOFs) to separate and remove AAI. Two vinylene-linked iCOFs (NKCOF-46-Br- and NKCOF-55-Br-) with high crystallinity are fabricated in a green and scalable fashion via a melt polymerization synthesis method. The resulting materials exhibit a uniform morphology, high stability, fast equilibrium time, and superior affinity and selectivity for AAI. Compared to conventional separation media, NKCOF-46-Br- and NKCOF-55-Br- achieve the record high adsorption capacities of 246.0 mg g−1 and 178.4 mg g−1, respectively. Various investigations reveal that the positively charged framework and favorable pore microenvironment of iCOFs contribute to their high selectivity and adsorption efficiency. Moreover, the iCOFs exhibit excellent biocompatibility by in vivo toxicity assays. This study paves a new avenue for the rapid, selective and efficient removal of toxicants from complex natural systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call