Abstract

BackgroundThe Australian scincid clade Lerista provides perhaps the best available model for studying limb reduction in squamates (lizards and snakes), comprising more than 75 species displaying a remarkable variety of digit configurations, from pentadactyl to entirely limbless conditions. We investigated the pattern and rate of limb reduction and loss in Lerista, employing a comprehensive phylogeny inferred from nucleotide sequences for a nuclear intron and six mitochondrial genes.ResultsThe inferred phylogeny reveals extraordinary evolutionary mutability of limb morphology in Lerista. Ancestral state reconstructions indicate at least ten independent reductions in the number of digits from a pentadactyl condition, with a further seven reductions proceeding independently from a tetradactyl condition derived from one of these reductions. Four independent losses of all digits are inferred, three from pentadactyl or tetradactyl conditions. These conclusions are not substantially affected by uncertainty in assumed rates of character state transition or the phylogeny. An estimated age of 13.4 million years for Lerista entails that limb reduction has occurred not only repeatedly, but also very rapidly. At the highest rate, complete loss of digits from a pentadactyl condition is estimated to have occurred within 3.6 million years.ConclusionThe exceptionally high frequency and rate of limb reduction inferred for Lerista emphasise the potential for rapid and substantial alteration of body form in squamates. An absence of compelling evidence for reversals of digit loss contrasts with a recent proposal that digits have been regained in some species of the gymnophthalmid clade Bachia, possibly reflecting an influence of differing environmental and genetic contexts on the evolution of limb morphology in these clades. Future study of the genetic, developmental, and ecological bases of limb reduction and loss in Lerista promises the elucidation of not only this phenomenon in squamates, but also the dramatic evolutionary transformations of body form that have produced the extraordinary diversity of multicellular organisms.

Highlights

  • The Australian scincid clade Lerista provides perhaps the best available model for studying limb reduction in squamates, comprising more than 75 species displaying a remarkable variety of digit configurations, from pentadactyl to entirely limbless conditions

  • Aside from their potential for elucidating the mechanisms and causes of limb reduction itself, such inferences of patterns and rates may contribute to an improved understanding of the substantial transformations of body form accompanying the emergence of higher taxa and, concomitantly, the relationship of macro- and microevolutionary phenomena (e.g., [4,5])

  • Phylogenetic relationships were inferred from ATP synthetase-β subunit intron, 12S rRNA, 16S rRNA, and ND4 and adjacent tRNA-His, tRNA-Ser, and tRNA-Leu nucleotide sequences (2859 aligned sites) for 72 species of Lerista (c. 90% of those presently recognised) and three outgroup taxa (Ctenotus robustus, Eulamprus kosciuskoi, and Glaphyromorphus fuscicaudis)

Read more

Summary

Introduction

The Australian scincid clade Lerista provides perhaps the best available model for studying limb reduction in squamates (lizards and snakes), comprising more than 75 species displaying a remarkable variety of digit configurations, from pentadactyl to entirely limbless conditions. A number of squamate clades include extant species displaying a range of intermediate states between pentadactyl and limbless conditions, affording the possibility of reconstructing patterns and rates of limb reduction and loss. Aside from their potential for elucidating the mechanisms and causes of limb reduction itself, such inferences of patterns and rates may contribute to an improved understanding of the substantial transformations of body form accompanying the emergence of higher taxa and, concomitantly, the relationship of macro- and microevolutionary phenomena (e.g., [4,5])

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.